Strain Engineering of Adsorbate Self-Assembly on Graphene for Band Gap Tuning
نویسندگان
چکیده
منابع مشابه
Energy band-gap engineering of graphene nanoribbons.
We investigate electronic transport in lithographically patterned graphene ribbon structures where the lateral confinement of charge carriers creates an energy gap near the charge neutrality point. Individual graphene layers are contacted with metal electrodes and patterned into ribbons of varying widths and different crystallographic orientations. The temperature dependent conductance measurem...
متن کاملBand-Gap Tuning Of Electron Beam Evaporated Cds Thin Films
The effect of evaporation rate on structural, morphological and optical properties of electron beam evaporated CdS thin films have been investigated. CdS thin film deposited by electron beam evaporation method in 12nm/min and 60nm/min evaporation rates on glass substrates. X-ray diffraction, scanning electron microscopy, UV-Vis-NIR spectroscopy and Atomic Force Microscopy were used to character...
متن کاملLithographic band gap tuning in photonic band gap crystals
We describe the lithographic control over the spectral response of three-dimensional photonic crystals. By precise microfabrication of the geometry using a reproducible and reliable procedure consisting of electron beam lithography followed by dry etching, we have shifted the conduction band of crystals within the near-infrared. Such microfabrication has enabled us to reproducibly define photon...
متن کاملband-gap tuning of electron beam evaporated cds thin films
the effect of evaporation rate on structural, morphological and optical properties of electron beam evaporated cds thin films have been investigated. cds thin film deposited by electron beam evaporation method in 12nm/min and 60nm/min evaporation rates on glass substrates. x-ray diffraction, scanning electron microscopy, uv-vis-nir spectroscopy and atomic force microscopy were used to character...
متن کاملCharge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping
Epitaxial graphene on SiC 0001 suffers from strong intrinsic n-type doping. We demonstrate that the excess negative charge can be fully compensated by noncovalently functionalizing graphene with the strong electronacceptor tetrafluorotetracyanoquinodimethane F4-TCNQ . Charge neutrality can be reached in monolayer graphene as shown in electron-dispersion spectra from angular-resolved photoemissi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Physical Chemistry C
سال: 2019
ISSN: 1932-7447,1932-7455
DOI: 10.1021/acs.jpcc.8b09894